Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium.
نویسندگان
چکیده
Cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-dependent airway epithelial bicarbonate transport is hypothesized to participate in airway surface liquid pH regulation and contribute to lung defense. We measured pH and ionic composition in apical surface liquid (ASL) on polarized normal (NL) and CF primary bronchial epithelial cell cultures under basal conditions, after cAMP stimulation, and after challenge with luminal acid loads. Under basal conditions, CF epithelia acidified ASL more rapidly than NL epithelia. Two ASL pH regulatory paths that contributed to basal pH were identified in the apical membrane of airway epithelia, and their activities were measured. We detected a ouabain-sensitive (nongastric) H+,K+-ATPase that acidified ASL, but its activity was not different in NL and CF cultures. We also detected the following evidence for a CFTR-dependent HCO3- secretory pathway that was defective in CF: (i). ASL [HCO3-] was higher in NL than CF ASL; (ii). activating CFTR with forskolin/3-isobutyl-1-methylxanthine alkalinized NL ASL but acidified CF ASL; and (iii). NL airway epithelia more rapidly and effectively alkalinized ASL in response to a luminal acid challenge than CF epithelia. We conclude that cultured human CF bronchial epithelial pHASL is abnormally regulated under basal conditions because of absent CFTR-dependent HCO3- secretion and that this defect can lead to an impaired capacity to respond to airway conditions associated with acidification of ASL.
منابع مشابه
Non-Genomic Estrogen Regulation of Ion Transport and Airway Surface Liquid Dynamics in Cystic Fibrosis Bronchial Epithelium
Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial ...
متن کاملAcidic pH increases airway surface liquid viscosity in cystic fibrosis.
Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surfa...
متن کاملAltered NaCl Concentration of Airway Surface Liquid in Cystic Fibrosis
The major pathology in cystic fibrosis (CF) results from the colonization of the airways by the bacterium Pseudomonas aeruginosa. Indirect evidence suggests that this colonization occurs because the thin (10 μm) film of liquid that lines the airways (so-called airway surface liquid; Fig. 1) is saltier in CF patients than in healthy individuals and the endogenous antibiotics that are secreted by...
متن کاملRegulation and functional significance of airway surface liquid pH.
In gastrointestinal tissues, cumulative evidence from both in vivo and in vitro studies suggests a role for the cystic fibrosis transmembrane conductance regulator (CFTR) in apical epithelial bicarbonate conductance. Abnormal lumenal acidification is thus hypothesized to play a role in the genesis of cystic fibrosis (CF) pancreatic disease. However, consensus regarding CFTR's participation in p...
متن کاملInterleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells.
The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 26 شماره
صفحات -
تاریخ انتشار 2003